Recent Advances in the Theory of Power Law and Applications

Alexis Akira Toda

University of California San Diego

March 1, 2024

Introduction

We study the tail behavior of

$$W_T = \sum_{t=1}^I X_t,$$

where

- $\{X_t\}_{t=1}^{\infty}$: some stochastic process,
- T: some stopping time.
- \triangleright Main result: W_T has exponential tails under fairly mild conditions; simple formula for the tail exponent α .
- **Example:** if $\{X_t\}_{t=1}^{\infty}$ is IID and T is geometric with mean 1/p, then

$$(1-p)\,\mathsf{E}[\mathrm{e}^{\alpha X}]=1.$$

Introduction

▶ Many empirical size distributions obey power laws (e.g., city size (Gabaix, 1999), firm size (Axtell, 2001), income, consumption (Toda and Walsh, 2015), wealth, etc.)

$$P(S > s) \sim s^{-\alpha},$$

where S: size.

- ▶ Popular explanation is "random growth model": $S_t = G_t S_{t-1}$, where G: gross growth rate.
- ▶ Taking logarithm and setting $W_t = \log S_t$, $X_t = \log G_t$, we obtain the random walk

$$W_t = W_{t-1} + X_t.$$

Hence if $W_0 = 0$, we have $W_T = \sum_{t=1}^T X_t$.

Questions

- ▶ Most existing explanations using random growth assume IID Gaussian environment (geometric Brownian motion; Reed, 2001).
- Given ubiquity of power law distributions in empirical data (likely non-IID and non-Gaussian), generative mechanism should be robust (not depend on IID Gaussian assumptions).

Questions:

- 1. Do non-Gaussian, Markovian random growth processes generate Pareto tails?
- 2. If so, how is Pareto exponent determined?

Introduction

- Characterize tail behavior of random growth models with non-Gaussian. Markovian shocks.
 - 1. Analytical determination of Pareto exponent.
 - 2. Comparative statics.
- Two applications:
 - Estimate random growth model using Japanese prefecture/municipality population data. Model consistent with observed Pareto exponent but *only after* allowing for Markovian dynamics.
 - 2. Estimate random growth model using US county daily COVID case data. Model consistent with observed Pareto exponent.

Object of interest:

We seek to characterize the behavior of tail probabilities

$$P(W_T > w)$$
 and $P(W_T < -w)$

as $w \to \infty$, where...

Object of interest:

► We seek to characterize the behavior of tail probabilities

$$P(W_T > w)$$
 and $P(W_T < -w)$

as $w \to \infty$, where...

Markov additive process:

▶ $\{W_t, J_t\}_{t=0}^{\infty}$ is a Markov additive process, which means...

Object of interest:

We seek to characterize the behavior of tail probabilities

$$P(W_T > w)$$
 and $P(W_T < -w)$

as $w \to \infty$, where...

Markov additive process:

 $ightharpoonup \left\{W_t, J_t\right\}_{t=0}^{\infty}$ is a Markov additive process, which means. . .

Hidden Markov state:

- ▶ ${J_t}_{t=0}^{\infty}$ is a time homogeneous Markov chain taking values in $\mathcal{N} = \{1, \dots, N\}$.
- ▶ The transition probability matrix is $\Pi = (\pi_{nn'})$, where $\pi_{nn'} = P(J_1 = n' \mid J_0 = n)$.
- Initial condition: ϖ is the $N \times 1$ vector of probabilities $P(J_0 = n), \ n = 1, \dots, N.$

Increment process:

- $W_0 = 0, W_t = \sum_{s=1}^t X_s$.
- ▶ Distribution of increment $X_t = W_t W_{t-1}$ depends only on $(J_{t-1}, J_t) = (n, n').$
- Special cases:
 - 1. If N = 1, then $\{X_t\}_{t=1}^{\infty}$ is IID.
 - 2. If $X_t = \text{constant conditional on } J_t$, then $\{X_t\}_{t=1}^{\infty}$ is a finite-state Markov chain.

Stopping time:

- $\{W_t\}_{t=0}^{\infty}$ stops with state-dependent probability.
- $v_{nn'} = P(T > t \mid J_{t-1} = n, J_t = n', T \ge t)$: conditional survival probability.
- $ightharpoonup
 angle = (\upsilon_{nn'})$: survival probability matrix.

Conditional moment generating function:

- ▶ For $s \in \mathbb{R}$, define $\psi_{nn'}(s) = \mathbb{E}\left[\mathrm{e}^{sX_1} \mid J_0 = n, J_1 = n'\right] \in (0, \infty].$
- $\Psi(s) = (\psi_{nn'}(s))$: $N \times N$ matrix of conditional MGFs.

Region of convergence:

We define

$$\mathcal{I} = \left\{ s \in \mathbb{R} : \psi_{nn'}(s) < \infty \text{ for all } n, n' \in \mathcal{N} \right\}.$$

- $ightharpoonup \mathcal{I}$ is an interval containing zero, with possibly infinite endpoints.
- ▶ \mathcal{I} is the intersection of the N^2 regions of convergence of the conditional moment generating functions of X_t given $(J_{t-1}, J_t) = (n, n')$.

Assumption

Assumption

- 1. The matrix $\Upsilon \odot \Pi$ is irreducible.
- 2. There exists a pair (n, n') such that $v_{nn'} < 1$ and $\pi_{nn'} > 0$.

Assumption

Assumption

- 1. The matrix $\Upsilon \odot \Pi$ is irreducible.
- 2. There exists a pair (n, n') such that $v_{nn'} < 1$ and $\pi_{nn'} > 0$.
- ▶ $\Upsilon \odot \Pi$ is Hadamard (entry-wise) product.
- ▶ A matrix A is irreducible if for any pair (n, n'), there exists k such that $|A|_{nn'}^k > 0$.
- ▶ Intuitively, irreducibility of $\Upsilon \odot \Pi$ means we can transition from n to n' eventually without stopping.
- ▶ $v_{nn'} < 1$ and $\pi_{nn'} > 0$ guarantees $T < \infty$ almost surely.
- ho(A): spectral radius (largest absolute value of all eigenvalues) of A.

Main result

Theorem

As a function of $s \in \mathcal{I}$, the spectral radius $\rho(\Upsilon \odot \Pi \odot \Psi(s))$ is convex and less than 1 at s = 0. There can be at most one positive $\alpha \in \mathcal{I}$ such that

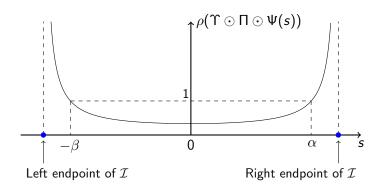
$$\rho(\Upsilon\odot\Pi\odot\Psi(\alpha))=1,$$

and if such α exists in the interior of \mathcal{I} then

$$\lim_{w\to\infty}\frac{1}{w}\log\mathrm{P}(W_T>w)=-\alpha.$$

▶ Similar statement holds for lower tail ($-\beta$ < 0 instead of $\alpha > 0$).

Determination of α and β



Refinement

Theorem

Let everything be as above. Then there exist A, B > 0 such that

$$\lim_{w \to \infty} e^{\alpha w} P(W_T > w) = A,$$

$$\lim_{w \to \infty} e^{\beta w} P(W_T < -w) = B$$

except when there exist c>0 and $a_{nn'}\in\mathbb{R}$ such that

$$\operatorname{supp}(X_1|J_0=n,J_1=n')\subset a_{nn'}+c\mathbb{Z}$$

for all $n, n' \in \mathcal{N}$. (We can take $a_{nn} = 0$ if $v_{nn}\pi_{nn} > 0$.)

Geometrically stopped random growth processes

Theorem

Let everything be as above. Let $S_0 > 0$ be a random variable independent of W_T satisfying $\mathsf{E}[S_0^{\alpha+\epsilon}]<\infty$ for some $\epsilon>0$, and define the random variable $S = S_0 e^{W_T}$. Then there exist numbers $0 < A_1 < A_2 < \infty$ such that

$$A_1 = \liminf_{s o \infty} s^{lpha} \mathrm{P}(\mathcal{S} > s) \leq \limsup_{s o \infty} s^{lpha} \mathrm{P}(\mathcal{S} > s) = A_2,$$

with $A_1 = A_2 = A$ unless there exist c > 0 and $a_{nn'} \in \mathbb{R}$ such that $supp(X_1|J_0=n,J_1=n')\subset a_{nn'}+c\mathbb{Z}$ for all $n,n'\in\mathcal{N}$.

 \triangleright S has a Pareto upper tail with exponent α .

Proof of main result

- The proof uses several mathematical results:
 - 1. Nakagawa (2007)'s Tauberian Theorem and its refinement
 - 2. Convex inequalities for spectral radius
 - 3. Perron-Frobenius Theorem
 - 4. Residue formula for matrix pencil inverses
- ▶ For the IID case, we can avoid 2–4 above.

Laplace transform

▶ For a random variable X with cdf F, let

$$\psi(s) = \mathsf{E}[\mathrm{e}^{sX}] = \int_{-\infty}^{\infty} \mathrm{e}^{sx} \, \mathrm{d}F(x)$$

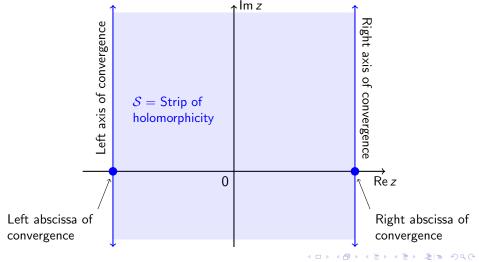
be its moment generating function (mgf), which is also known as the (two-sided) Laplace transform.

- Since e^{sx} convex in s, so is $\psi(s)$; hence its domain $\mathcal{I} = \{s \in \mathbb{R} : \psi(s) < \infty\}$ is an interval. Let $-\beta \leq 0 \leq \alpha$ be boundary points (may be 0 or $\pm \infty$).
- ▶ For $z \in \mathbb{C}$, by definition of Lebesgue integral,

$$\psi(z) = \mathsf{E}[\mathrm{e}^{zX}] = \int_{-\infty}^{\infty} \mathrm{e}^{zx} \,\mathrm{d}F(x)$$

exists and finite if and only if $\operatorname{Re} z \in \mathcal{I}$. $\psi(z)$ holomorphic on strip of analiticity $\mathcal{S} = \{z \in \mathbb{C} : -\beta < \operatorname{Re} z < \alpha\}$.

Strip of holomorphicity



Tauberian theorem

Theorem (Essentially, Theorem 5* of Nakagawa, 2007)

Let X be a real random variable and $\psi(z) = E[e^{zX}]$ its Laplace transform with right abscissa of convergence $0 < \alpha < \infty$ and strip of holomorphicity S. Suppose $A := \lim_{s \uparrow \alpha} (\alpha - s) \psi(s)$ exists, and let B be the supremum of all b>0 such that $\Psi(z)+A(z-\alpha)^{-1}$ continuously extends to $\mathcal{S}_b^+ = \mathcal{S} \cup \{z \in \mathbb{C} : z = \alpha + it, |t| < b\}$. Suppose that B > 0. Then we have

$$\frac{2\pi A/B}{e^{2\pi\alpha/B} - 1} \le \liminf_{x \to \infty} e^{\alpha x} P(X > x)$$

$$\le \limsup_{x \to \infty} e^{\alpha x} P(X > x) \le \frac{2\pi A/B}{1 - e^{-2\pi\alpha/B}},$$

where the bounds should be read as A/α if $B=\infty$.

Discussion

b By previous result, taking logarithm and letting $x \to \infty$, we get

$$\lim_{x \to \infty} \frac{\log P(X > x)}{x} = -\alpha,$$

which is Nakagawa (2007)'s main result.

 \triangleright Example: mgf of exponential distribution with exponent α is

$$\psi(z) = \int_0^\infty \alpha e^{-\alpha x} e^{zx} dx = \frac{\alpha}{\alpha - z},$$

so we can take $A = \alpha$ and $B = \infty$.

Proof of main result for IID case

- ▶ Let $\{X_t\}_{t=1}^{\infty}$ be IID with mgf $\psi_X(z) = \mathbb{E}[e^{zX}]$.
- ▶ mgf of $W_T = \sum_{t=1}^T X_t$ when T is geometric with mean 1/p is

$$\psi_W(z) = \sum_{k=1}^{\infty} (1-p)^{k-1} p(\psi_X(z))^k = \frac{p\psi_X(z)}{1-(1-p)\psi_X(z)}.$$

- Since $\psi_X(z)$ holomorphic, pole of $\psi_W(z)$ satisfies $\psi_X(z) = \frac{1}{1-p}$.
- ▶ Using convexity of $\psi_X(s+it)$ with respect to s, easy to show pole is simple.
- Hence assumption of Tauberian theorem satisfied. Tail exponents satisfy

$$\mathsf{E}[\mathrm{e}^{\alpha X}] = \mathsf{E}[\mathrm{e}^{-\beta X}] = \frac{1}{1-\rho}.$$

Application 1: Power law in Japanese municipalities

- Main question: are time series properties of population dynamics estimated from panel consistent with a stationary Pareto distribution estimated from cross-section?
- Estimate either at
 - ▶ 47 prefecture level (1873-) or
 - ▶ 1741 municipality level (1970-)

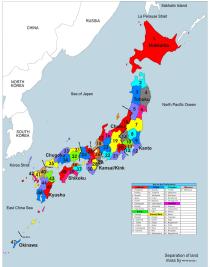
Applications

Historical background

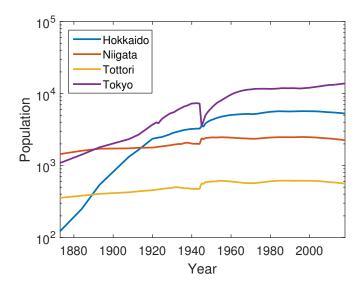
- ► Edo era: 1603-1868. Japan was divided into provinces called han, which were controlled by feudal lords called daimyō. No free movement of people across regions.
- ▶ 1868: Meiji Restoration. Free movement of people.
- ▶ 1871: Abolition of the han system (haihan-chiken). Number and boundary of prefectures settled by 1889
- Boundaries of modern prefectures largely follow those of ryoseikoku (province) established in the Nara era (8th century)

Japanese municipality populations

Modern prefectures



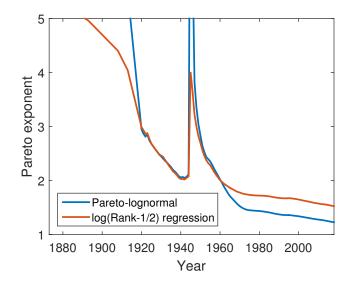
Japanese municipality populations



Cross-sectional estimation

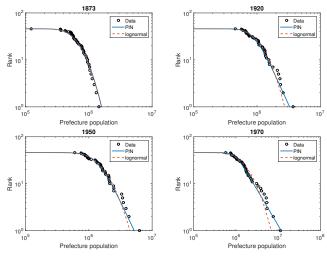
- For each year, assume that the cross-sectional distribution of prefecture population is Pareto-lognormal (product of independent Pareto and lognormal distributions).
- ▶ Three parameters (μ, σ, α) , mean and standard deviation of lognormal component and Pareto exponent.
- ▶ Lognormal is special case by setting $\alpha = \infty$.

Pareto exponents

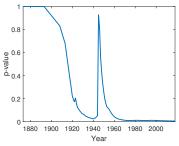


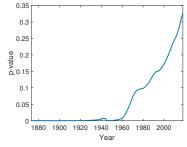
Japanese municipality populations

Log-log plot



Likelihood ratio tests





- (a) Test of lognormality ($\alpha = \infty$).
- (b) Test of Zipf's law ($\alpha = 1$).

Panel estimation

- Assume relative size S_{it} of prefecture i in year t follows random growth process $S_{i,t+1} = G_{i,t+1}S_{it}$, where $G_{i,t+1}$: gross growth rate between year t and t+1.
- N-state Markov switching model with conditionally Gaussian shocks:

$$\log G_{i,t+1} \mid n_{it} = n \sim N(\mu_n, \sigma_n^2),$$

where state n_{it} evolves as a Markov chain with transition probability matrix Π .

- ▶ Consider N = 1, 2, 3; estimate parameters from post war data by maximum likelihood using Hamilton (1989) filter.
- Compute implied Pareto exponent by solving

$$\rho(\Pi \operatorname{diag}(e^{\mu_1 s + \sigma_1^2 s^2/2}, \dots, e^{\mu_N s + \sigma_N^2 s^2/2})) = \frac{1}{1 - p}.$$

Applications 00000000000000

Estimation of random growth model

N	1
	_
П	1
μ	-0.0035
σ	0.0111
log L	9,925
α	56.7
α_{2015}	1.3

Estimation of random growth model

N	1	2	
П	1	[0.9754 0.0246] [0.0283 0.9717]	
μ σ	-0.0035 0.0111	$\begin{bmatrix} -0.0030 & -0.0030 \end{bmatrix}^{\top} \\ \begin{bmatrix} 0.0029 & 0.0169 \end{bmatrix}^{\top}$	
$\log L$	9,925 56.7	11,638 26.8	
α_{2015}	1.3	1.3	

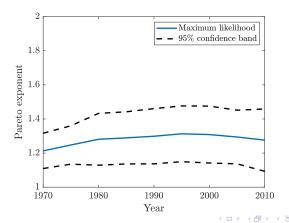
Estimation of random growth model

N	1	2	3	
П	1	[0.9754 0.0246] [0.0283 0.9717]	[0.9439 0.0561 0.0000 0.0145 0.9671 0.0184 0.0210 0.0141 0.9649	
μ	-0.0035	$\begin{bmatrix} -0.0030 & -0.0030 \end{bmatrix}^{\top}$	$\begin{bmatrix} -0.0122 & -0.0022 & 0.0084 \end{bmatrix}^{\top}$	
σ	0.0111	$\begin{bmatrix} 0.0029 & 0.0169 \end{bmatrix}^{ op}$	$\begin{bmatrix} 0.0053 & 0.0026 & 0.0199 \end{bmatrix}^{\top}$	
log L	9,925	11,638	12,388	
α	56.7	26.8	1.61	
α_{2015}	1.3	1.3	1.3	

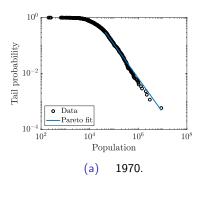
Japanese municipality populations

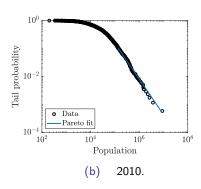
Cross-sectional estimation for municipalities

► Estimate Pareto exponent by maximum likelihood (Hill estimator).



Cross-sectional estimation for municipalities





Applications 000000000000000

Panel estimation for municipalities

- ► Consider *N* = 1,...,5; estimate parameters by maximum likelihood using Hamilton (1989) filter and expectation-maximization algorithm.
- Compute implied Pareto exponent by solving

$$(1-p)\rho(\Pi \operatorname{diag}(e^{\mu_1 s + \sigma_1^2 s^2/2}, \dots, e^{\mu_N s + \sigma_N^2 s^2/2})) = 1.$$

Panel estimation for municipalities

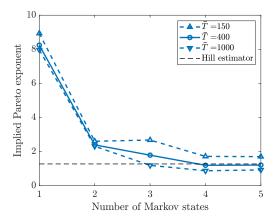
- ► Consider *N* = 1,...,5; estimate parameters by maximum likelihood using Hamilton (1989) filter and expectation-maximization algorithm.
- Compute implied Pareto exponent by solving

$$(1-\rho)\rho(\operatorname{\mathsf{\Pi}}\operatorname{\mathsf{diag}}(\mathrm{e}^{\mu_1\mathfrak{s}+\sigma_1^2\mathfrak{s}^2/2},\ldots,\mathrm{e}^{\mu_N\mathfrak{s}+\sigma_N^2\mathfrak{s}^2/2}))=1.$$

- Choosing mean age $\bar{T} = 1/p$:
 - ▶ Meiji Restoration is in 1868, so lower bound $\bar{T} = 150$.
 - $ar{\mathcal{T}}=$ Kamakura Shogunate started in 1185, so upper bound $ar{\mathcal{T}}=$ 1000.
 - ▶ Tokugawa Shogunate started and moved capital to Tokyo in 1603, so $\bar{T} = 400$ reasonable.
 - Hence consider p = 1/1000, 1/400, 1/150.

Implied Pareto exponent

▶ With N = 1 (IID), $\alpha \approx 8 \gg 1$.



Application 2: Power law in COVID-19 cases

- Main question: are growth dynamics and random stopping consistent with Pareto exponent estimated from cross-section?
- Analysis from Beare and Toda (2020)
- Data:
 - ▶ Daily COVID-19 case data from January 2020 to March 2020
 - ► US counties (2,121 counties with at least one case out of 3,243 counties)
 - Merge 5 boroughs of New York City as "New York"

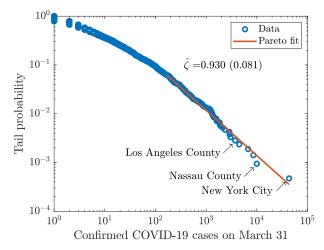
SIR model

Susceptible-Infected-Recovered (SIR) model:

$$\begin{split} \dot{S} &= -\beta SI, \\ \dot{I} &= \beta SI - \gamma I, \\ \dot{R} &= \gamma I, \\ S + I + R &= 1 \end{split}$$

- ▶ At beginning of epidemic, we have $S \approx 1$, $I \ll 1$, $R \approx 0$
- ▶ Easy to show that cumulative cases C := I + R grows at rate $\beta - \gamma$
- In practice, cases grow randomly

Cases on 3/31/2020



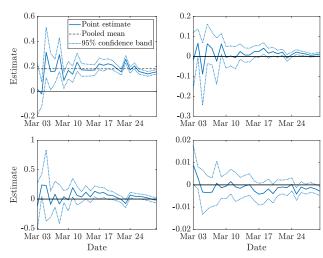
Testing Gibrat's law

- ▶ If Gibrat's law holds, growth rate of cases should be independent of current cases
- For each date t, estimate cross-sectional regression

$$\Delta \ln c_{i,t+1} = \beta_{0t} + \beta_{1t} \ln c_{it} + \beta_{2t} \Delta \ln c_{it} + \beta_{3t} D_{it} + \varepsilon_{it}$$

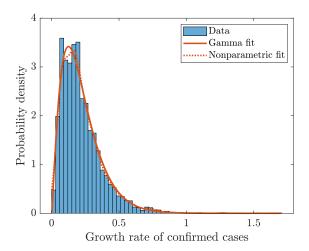
- Here
 - c_{it}: cumulative cases in country i on date t
 - ▶ D_{it}: number of days elapsed since first case reported
 - \triangleright ε_{it} : error term
- ▶ Gibrat's law holds if $\beta_{1t} = \beta_{2t} = \beta_{3t} = 0$

Daily estimates of $\beta_{0t}, \beta_{1t}, \beta_{2t}, \beta_{3t}$

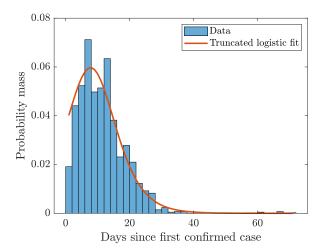


COVID-19 cases

Distribution of growth rate of cases



Distribution of days since first case



Implied Pareto exponent

Distribution of growth rate is mixture of point mass at 0 and gamma:

$$f(x) = \pi \delta(0) + (1 - \pi) \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}$$

with
$$(\pi, \alpha, \lambda) = (0.128, 2.30, 10.4)$$

Distribution of days since first case is truncated logistic:

$$P(T = n) = \frac{(1+\phi)(1-q)q^{n-1}}{(1+\phi q^{n-1})(1+\phi q^n)}$$

with
$$(q, \phi) = (0.825, 4.06)$$

Implied Pareto exponent

MGF of log cases is

$$M_Y(z) = \sum_{n=1}^{\infty} P(T = n) M(z)^n,$$

where

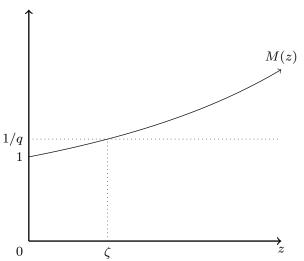
$$M(z) = \pi + (1-\pi)(1-z/\lambda)^{-\alpha}$$

- ▶ Can show $M_Y(z)$ has pole ζ with $M(\zeta) = 1/q$, which gives Pareto exponent
- Solving equation, get

$$\zeta = \lambda \left[1 - \left(\frac{1 - \pi}{1/q - \pi} \right)^{1/\alpha} \right] = 0.928$$

COVID-19 cases

Implied Pareto exponent



Conclusion

- Determination of Pareto exponent under
 - Markov modulation
 - Random stopping
- Many data sets known to obey power law, but generative mechanism has not been tested often
- Evidence for
 - Japanese population dynamics
 - COVID dynamics

References

- Axtell, R. L. (2001). "Zipf Distribution of U.S. Firm Sizes".

 Science 293.5536, 1818–1820. DOI:

 10.1126/science.1062081.
- Beare, B. K. and A. A. Toda (2020). "On the Emergence of a Power Law in the Distribution of COVID-19 Cases". *Physica D: Nonlinear Phenomena* 412, 132649. DOI:
 - 10.1016/j.physd.2020.132649.
 - Beare, B. K. and A. A. Toda (2022). "Determination of Pareto Exponents in Economic Models Driven by Markov Multiplicative Processes". *Econometrica* 90.4, 1811–1833. DOI: 10.3982/ECTA17984.
- Gabaix, X. (1999). "Zipf's Law for Cities: An Explanation".

 Quarterly Journal of Economics 114.3, 739–767. DOI: 10.1162/003355399556133.

References

- Hamilton, J. D. (1989). "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle". *Econometrica* 57.2, 357–384, DOI: 10.2307/1912559.
 - Nakagawa, K. (2007). "Application of Tauberian Theorem to the Exponential Decay of the Tail Probability of a Random Variable". *IEEE Transactions on Information Theory* 53.9, 3239–3249. DOI: 10.1109/TIT.2007.903114.
- Reed, W. J. (2001). "The Pareto, Zipf and Other Power Laws". *Economics Letters* 74.1, 15–19. DOI: 10.1016/S0165-1765(01)00524-9.
- Toda, A. A. and K. Walsh (2015). "The Double Power Law in Consumption and Implications for Testing Euler Equations".

 Journal of Political Economy 123.5, 1177–1200. DOI: 10.1086/682729.